

Robocode の高等技術 - パターンマッチング - 1 ････････････････

･･････････････････････････････････････

･･･････････････････････････････････

･･

･･･････････････････････････････････

 パターンマッチング 1

 パターンマッチングの原理 1

 ソースコード 3

 パターンマッチングの効果 3

0

Appendix 2

Robocode の高等技術 - パターンマッチング -

このドキュメントでは Robocode の高度なテクニックについて解説しています。

ここでは、複雑な動きをする敵ロボットの動きを予測するパターンマッチングにつ

いて解説します。

このサンプルロボットは、STAGE 5 で解説した AdvancedRobot クラスの Droideka に

組み込みます。

パターンマッチング

 パターンマッチングは敵の動きを記録して、そこから現在の動きに合ったパタ

ーンを探すことで、次の動きを予測します。そのために、直線・円形・往復運動す

るロボットだけでなく、複雑な動きを見せるロボットにも効果があります。

 ここでは、Robo Wiki（http://robowiki.dyndns.org/）の解説（英語）を参考に

しました。

■パターンマッチングの原理
 パターンマッチングでは、敵の動きを長時間に渡って記録します。すべての情報

ではなく、敵の移動速度の自ロボットに対する水平方向成分を記録します。

 敵の移動速度（自ロボットに対する水平方向成分）

 ＝ 敵ロボットの速度 ＊ Sin（敵の方向 － 敵の進行方向）

 ●敵の移動速度の自ロボットに対する水平方向成分を記録する

1

 記録には、配列と StringBuffer クラスを使います。

 配列とは、変数に番号を付けたもので、その番号で特定の変数の位置を指定でき

ます。StringBuffer クラスは、Java クラスライブラリに用意された標準部品の 1

つです。配列とよく似ていますが、検索用のメソッドを最初から持っています。本

来は文字列を格納するクラスですが、データを char 型に変換することで他のデー

タ型を保存できます。

 パターンマッチングでは、敵ロボットの移動速度を StringBuffer クラスに格納

し、その変化分を配列に格納します。

 敵ロボットの移動速度 --------------- patternMatcher クラス

 敵ロボットの移動速度の変化分 ------- arcLength 配列

 パターンマッチングでは、記録されている敵ロボットの動きから最近の動きと同

じ部分を探し、それに続く動きを移動予測に利用します。

Column --- StringBuffer クラスのメソッド

 パターンマッチングでは、"StringBuffer"クラスが持つ次の 3 つのメソッ

ドを使います。

append()メソッド ------- StringBuffer クラスにデータを追加する

substring()メソッド ---- StringBuffer クラスからデータを取り出す

lastIndexOf()メソッド ‒--StringBuffer クラスから特定のデータの位置を

 検索する

 StirngBuffer クラスの使い方は、次のサイトに掲載されています。

・Java 2 プラットフォーム API 仕様

 http://java.sun.com/j2se/1.4/ja/docs/ja/api/index.html

2

■ソースコード
 Michael Dorgan が開発した Moebius のコードを参考にして、パターンマッチング

のロボットプログラムを作りました。このロボットはパターンマッチングを採用し

た短いロボットプログラムで、Minibot Challenge で 1 位になったこともある実力

派ロボットです。

 Appendix 2 で登場したロボットのサンプルコードは、付録 CD-ROM の次のフォル

ダに収録してあります。

・付録 CD-ROM の「sample_code」→「Appendix2」フォルダ

・ファイルの内容

 Droideka_Pattern.java ----- パターンマッチングを実装した Droideka

 Enemy.java ---------------- 敵情報を管理するクラス

 Direction.java ------------ 方向管理クラス

 Lib.java ------------------ 共通処理クラス

■パターンマッチングの効果
 doAim()メソッドを組み込んだロボットは、直線予測や円形予測がなくても確実

に敵を攻撃できます。ただし、Droideka に組み込むにはいくつか調整が必要です。

自分の位置が動きすぎると、予測機能が十分に効果を出せないことがあるようで

す。

3

